Producción de eritadenina por Lentinula edodes en fermentación en estado sólido

  • Amado Israel Grandes-Blanco Universidad Autónoma de Tlaxcala
  • Ángel Arturo Cuamatzi-Hernández Universidad Politécnica de Tlaxcala
  • Silvia Luna-Suárez Centro de Investigación en Biotecnología Apliada-Instituto Politécnico Nacional
  • Lilia Sánchez-Minutti Universidad Politécnica de Tlaxcala

Resumen

Antecedentes: Lentinula edodes es un hongo comestible de importancia económica en México, produce un compuesto reductor de colesterol llamado eritadenina, el cual se ha obtenido del cuerpo fructífero y micelio del hongo. Su producción se ha evaluado en fermentación sumergida, pero hasta ahora no se ha evaluado la fermentación en estado sólido.

Objetivos: Determinar si la fermentación en estado sólido de L. edodes mejora la producción de eritadenina.

Métodos: Se realizó una fermentación en estado sólido con espuma de poliuretano y un medio enriquecido para determinar la producción de eritadenina, biomasa y consumo de sustrato; la eritadenina se detectó por HPLC-DAD a 260 nm.

Resultados y conclusiones: La biomasa máxima fue de 3.6 ± 0.11 g/L, con una tasa de crecimiento específico de 0.015 ± 0.002 h-1. La eritadenina se produjo en la biomasa y se liberó al medio de cultivo; a las 168 h de incubación se incrementó 2.8 y 2.4 veces, respectivamente. Se encontró una relación proporcional entre la producción de eritadenina y biomasa. No hubo relación entre el consumo de sustrato y la producción de eritadenina. La fermentación en estado sólido es una alternativa para producir y recuperar la eritadenina.

Citas

Afrin, S., M. A. Rakib, B. H. Kim, J. O. Kim, Y. L. Ha, 2016. Eritadenine from edible mushrooms inhibits activity of angiotensin converting enzyme in vitro. Journal of Agricultural and Food Chemistry 64: 2263-2268. https://doi.org/10.1021/acs.jafc.5b05869.

Aniszewski, T., 2015. Alkaloids: chemistry, biology, ecology, and applications. Elsevier. Amsterdam.

Álvarez-Cervantes, J., E. M. Hernández-Domínguez, A. Arana-Cuenca, G. Díaz-Godínez, Y. Mercado-Flores, 2013. Purification and characterization of xylanase SRXL1 from Sporisorium reilianum grown in submerged and solid-state fermentation. BioResources 8: 5309-5318. https://doi.org/10.15376/biores.8.4.5309-5318.

Ansari, F. J., H. Jalili, M. Bizukojc, A. Amrane, 2018. Optimization of date syrup as a novel medium for lovastatin production by Aspergillus terreus ATCC 20542 and analyzing assimilation kinetic of carbohydrates. Annals of Microbiology 68: 351-363. https://doi.org/10.1007/s13213-018-1342-2.

Casas López, J. L., J. A. Sánchez Pérez, J. M. Fernández Sevilla, F. G. Acién Fernández, E. Molina Grima, Y. Chisti, 2003. Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme and Microbial Technology 33: 270-277. https://doi.org/10.1016/S0141-0229(03)00130-3.

Chibata, I., K. Okumura, S. Takeyama, K. Kotera, 1969. Lentinacin: A new hypocholesterolemic substance in Lentinus edodes. Experientia 25: 1237-1238. https://doi.org/10.1007/BF01897467.

Díaz-Godínez, G., J. Soriano-Santos, C. Augur, G. Viniegra-González, 2001. Exopectinases produced by Aspergillus niger in solid-state and submerged fermentation: A comparative study. Journal of Industrial Microbiology and Biotechnology 26: 271-275. https://doi.org/10.1038/sj.jim.7000113.

Durán-Rivera, B., J. R. Moreno-Suárez, F. Rojas Rodas, K. M. Valencia Jiménez, D. Castro–Restrepo, 2018. Enhancement of eritadenine production using three carbon sources, immobilization and surfactants in submerged culture with shiitake mushroom (Lentinula edodes) (Berk.) Singer). African Journal of Food Science 12: 374-382. https://doi.org/10.5897/AJFS2017.1654.

Enman, J., D. Hodge, K. A. Berglund, U. Rova, 2012. Growth promotive conditions for enhanced eritadenine production during submerged cultivation of Lentinus edodes. Journal of Chemical Technology and Biotechnology 87: 903-907. https://doi.org/10.1002/jctb.3697.

Enman, J., D. Hodge, K. A. Berglund, U. Rova, 2008. Production of the bioactive compound eritadenine by submerged cultivation of shiitake (Lentinus edodes) mycelia. Journal of Agricultural and Food Chemistry 56: 2609-2612. https://doi.org/10.1021/jf800091a.

Enman, J., U. Rova, K. A. Berglund, 2007. Quantification of the bioactive compound eritadenine in selected strains of shiitake mushroom (Lentinus edodes). Journal of Agricultural and Food Chemistry 55: 1177-1180. https://doi.org/10.1021/jf062559+.

Fazenda, M. L., R. Seviour, B. McNeil, L. M. Harvey, 2008. Submerged Culture Fermentation of “Higher Fungi”: The Macrofungi. Advances in Applied Microbiology 63: 33-103. https://doi.org/10.1016/S0065-2164(07)00002-0.

Feng, Y. L., W. Q. Li, X. Q. Wu, J. W. Cheng, S. Y. Ma, 2010. Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal 49: 104-112. https://doi.org/10.1016/j.bej.2009.12.002.

Furlan, S., L. Virmond, D. Miers, M. Bonatti, R. Gern, R. Jonas, 1997. Mushrooms strains able to grow at high temperatures and low pH values. World Journal of Microbiology and Biotechnology 13: 689-92. https://doi.org/10.1023/A:1018579123385.

Gowthaman, M. K., C. Krishna, M. Moo-Young, 2007. Fungal solid state fermentation-an overview 1: 305-352. https://doi.org/10.1016/s1874-5334(01)80014-9.

Hobbs, C. R., 2000. Medicinal value of Lentinus edodes (Berk.) sing. (Agaricomycetideae). A literature review. International Journal of Medicinal Mushrooms 2: 287-302. https://doi.org/10.1615/IntJMedMushr.v2.i4.90.

Kim, H. O., J. M. Lim, J. H. Joo, S. W. Kim, H. J. Hwang, J. W. Choi, J. W. Yun, 2005. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresource Technology 96: 1175-1182. https://doi.org/10.1016/j.biortech.2004.09.021.

Lee, S., H. Bae, N. Kim, S. Hwang, 2008. Optimization of growth conditions of Lentinus edodes mycelium on corn processing waste using response surface analysis. Journal of Bioscience and Bioengineering 105: 161-163. https://doi.org/10.1263/jbb.105.161.

Martinez-Carrera, D., 2002. Current development of mushroom biotechnology in Latin America. Micología Aplicada Internacional 14: 61-74.

Miller, G. L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31: 426-428. https://doi.org/10.1021/ac60147a030.

Royse, D. J., J. Baars, Q. Tan, 2017. Current overview of mushroom production in the World. In: Zied D. C., Pardo-Giménez A. (ed.), Edible and Medicinal Mushrooms. John Wiley & Sons, New York. pp. 5-13. https://doi.org/10.1002/9781119149446.ch2.

Shimada, Y., T. Morita, K. Sugiyama, 2003. Eritadenine-induced alterations of plasma lipoprotein lipid concentrations and phosphatidylcholine molecular species profile in rats fed cholesterol-free and cholesterol-enriched diets. Bioscience Biotechnology Biochemistry 67: 996-1006. https://doi.org/10.1271/bbb.67.996.

Sugiyama, K., T. Akachi, A. Yamakawa, 1995. Hypocholesterolemic action of eritadenine is mediated by a modification of hepatic phospholipid metabolism in rats. The Journal of Nutrition 125: 2134-2144. https://doi.org/10.1093/jn/125.8.2134.

Téllez-Téllez, M., F. J. Fernández, A. M. Montiel-González, C. Sánchez, G. Díaz-Godínez, 2008. Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation. Applied Microbiology and Biotechnology 81: 675-679. https://doi.org/10.1007/s00253-008-1628-6.

Toca-Herrera, J., J. Osma, S. Couto, 2007. Potential of solid-state fermentation for laccase production. Communicating Current Research and Educational Topics and Trends in Applied Microbiology 10: 391-400. http://www.formatex.org/microbio/pdf/Pages391-400.pdf.

Turlo, J., B. Gutkowska, F. Herold, W. Krzyczkowski, A. Błazewicz, R. Kocjan, 2008. Optimizing vitamin B12 biosynthesis by mycelial cultures of Lentinula edodes (Berk.) Pegl. Enzyme and Microbial Technology 43: 369-374. https://doi.org/10.1016/j.enzmictec.2008.05.005.

Velázquez, L., M. Téllez-Téllez, R. Díaz, M.D. Bibbins-Martínez, O. Loera, C. Sánchez, S. Tlecuitl-Beristain, G. Díaz-Godínez, 2014. Laccase isoenzymes of Pleurotus ostreatus grown at different pH in Solid-State Fermentation using polyurethane foam as support. Annual Research & Review in Biology 4: 2566-2578. https://doi.org/10.9734/arrb/2014/10016.

Ying, X., J. Ma, Q. Liang, Y. Wang, G. Bai, G. Luo, 2013. Identification and analysis of the constituents in an aqueous extract of Tricholoma matsutake by HPLC coupled with diode array detection/electrospray ionization mass spectrometry. Journal of Food Science 78: 1173-1182. https://doi.org/10.1111/1750-3841.12219.

Yoon, K. N., N. Alam, J. S. Lee, H. J. Cho, H. Y. Kim, M. J. Shim, M. W. Lee, T. S. Lee, 2011. Antihyperlipidemic effect of dietary Lentinus edodes on plasma, feces and hepatic tissues in hypercholesterolemic rats. Mycobiology 39: 96-102. https://doi.org/10.4489/MYCO.2011.39.2.096.

Publicado
2021-07-15
Sección
Artículos científicos originales