Microorganismos termófilos promotores del crecimiento en un sustrato pasteurizado por autocalentamiento mejoran el crecimiento micelial de Agaricus bisporus

Resumen

Antecedentes: El desarrollo de ciertos microorganismos durante la preparación del sustrato para cultivar Agaricus bisporus es de gran interés por la conversión de material orgánico, y por la excreción de metabolitos con actividades reguladoras de crecimiento que pueden afectar los procesos de desarrollo del hongo. Mejorar la presencia de estos organismos benéficos en el sustrato puede ser una alternativa biotecnológica para optimizar el desarrollo de A. bisporus.

Objetivo. Identificar microorganismos termófilos en un sustrato pasteurizado por autocalentamiento con efecto promotor del crecimiento al usarse para cultivar A. bisporus.

Métodos: Diferentes microorganismos fueron aislados y seleccionados a 45 y 55 °C. Fueron probados en su capacidad para producir sideróforos, consumir 1-octen-3-ol, y solubilizar fosfato, así como en cocultivo con A. bisporus para determinar el efecto de crecimiento en agar papa dextrosa (APD) y en pasto pangola estéril (Digitaria eriantha).

Resultados: De 106 microorganismos aislados, 88 % fueron capaces de crecer en presencia de 1-octen-3-ol, mientras que 1 % tuvo capacidad de producir sideróforos y 55 % tuvo la habilidad para solubilizar fosfatos. Las cepas Bacillus hisashii ECS-B-65, B. licheniformis ECS-B-78, Rhizomucor pusillus ECS-710 y ECS-712, Aspergillus fumigatus ECS-709 y Thermomyces sp. ECS-711 presentaron efecto positivo en el crecimiento de A. bisporus.

Biografía del autor

Yazmín C. Díaz-Martínez, Instituto de BiocienciasUniversidad Autónoma de Chiapas

Posición actual:

Asistente de investigación

Grupo Académico de biotecnología Ambiental

El Colegio de la Frontera Sur

Griselda K. Guillén, El Colegio de la Frontera Sur

Departamento Ciencias de la Sustentabilidad
Ecosur

José E. Sánchez, El Colegio de la Frontera Sur

Grupo Académico de biotecnología Ambiental

Departamento Ciencias de la Sustentabilidad

Ecosur

Citas

Aguilar Pontesa, M.V., A. Patyshakuliyeva, H. Postb, E. Jurakd, K. Hildéne, M. Altelaarb, A. Heckb, M.A. Kabeld, R.P. de Vriesa, M.R. Mäkelä, 2018. The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates. Fungal Genetics and Biology (112):12–20.

Atkey, P.T., D.A. Wood, 1983. An electron microscope study of wheat straw composted as a substrate for the cultivation of the edible mushroom (Agaricus bisporus). J. Appl. Microbiol 55, 293-304.

Avendaño, R.J., J.E. Sánchez, 2013. Self-pasteurised substrate for growing oyster mushrooms (Pleurotus spp.). African Journal of Microbiol Res 7(3): 220-226.

Bechara, M., P. Heinemann, P. Walker, C.P. Romaine, 2005. Cultivation of Agaricus bisporus on a mixture of cereal grain spawn and delayed-release nutrient supplement. Mush. News 53 (8), 6–10

Cahyani, V.R., K. Matsuya, S. Asakawa, M. Kimura, 2004. Succession and phylogenetic profile of eukaryotic communities in the composting process of rice straw estimated by PCR-DGGE analysis. Biology and fertility of soils 40(5), 334-344.

Camacho, A.D., L. Martínez, H. Ramírez, R. Valenzuela, M. Valdés, 2014. Potencial de algunos microorganismos en el compostaje de residuos sólidos. Terra Latinoamericana 32(4), 291-300.

Cariello, M.E., L. Castañeda, I. Riobo, 2007. Inoculante de microorganismos endógenos para acelerar el proceso compostaje de residuos sólidos urbanos. RC Suelo Nutr. Veg 7(3), 26-35.

Chitarra, G.S., T. Abee, F.M. Rombouts, M.A. Posthumus, J. Dijksterhuis, 2004. Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Env Microbiol 70(5), 2823-2829.

Coello, M.M., J.E. Sánchez, D.J. Royse, 2009. Production of Agaricus bisporus on substrates pre-colonized by Scytalidium thermophilum and supplemented at casing with protein-rich supplements. Bioresource Technology 100(19): 4488-4492.

Colmenares, S., J.E. Sánchez, J. Valle, 2017. Agaricus bisporus production on substrates pasteurized by self-heating. AMB Express 7(1): 135.

Eastwood, D.C., B. Herman, R. Noble, A. Dobrovin, S. Sreenivasaprasad, S. Kerry, K.S. Burton, 2013. Environmental regulation of reproductive phase change in Agaricus bisporus by 1-octen-3-ol, temperature and CO2. Fungal Genetics and Biology 55, 54-66.

Ellis, M.B., 1971. Dematiaceous hyphomycetes. X. Mycological Papers 125:1-30.

Fermor, T.R., D.A. Wood, 1991. Mushroom compost microbial biomass: a review. Sci Cultivation Edible Fungi 13:191-200.

Gupta, M., S. Kiran, A. Gulati, B. Singh, R. Tewari, 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol Res 167(6): 358-363.

Herrero, E., A. Garzia, S. Cordobés, E.A. Espeso, U. Ugalde, 2011. 8-Carbon oxylipins inhibit germination and growth and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biology 115(4-5), 393-400.

Kabel, M.A., E. Jurak, M.R. Mäkelä, R.P. de Vries, 2017. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation.Appl. Microbiol. Biotechnol. 101, 4363-4369.

Karthikeyan, V., S. Patharajan, P. Palani, D. Spadaro, 2010. Modified simple protocol for efficient fungal DNA extraction highly. Global Journal of Molecular Sciences 5(1), 37-42.

Kertesz, M., K. Safianowicz, T. Bell, 2016. New insights in to the microbial communities and biological activities that define mushroom compost. Sci Cultivation Edible Fungi 19:161-165.

Kertesz, M., M. Thai, 2018. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Appl Microbiol Biotechnol 102(4), 1639-1650.

Luna, L., R.A. Martínez, M. Hernández, S.M. Arvizu, J.R. Pacheco, 2013. Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Revista Fitotecnia Mexicana 36(1): 63-69.

Morales, D.V., J.E. Sánchez, 2017. Self heating pasteurization of substrates for culinary-medicinal mushrooms cultivation in Mexico. Int. J. Med. Mush 19(5):477-484.

Noble, R., P.A. Dobrovin, P.J. Hobbs, J. Pederby, A. Rodger, 2009. Volatile C8 compounds and pseudomonads influence primordium formation of Agaricus bisporus. Mycologia 101(5), 583-591.

Op den Camp, H., C.K. Stumin, G. Straatsma, P.J. Derikx, L.J. Van Griensven, 1990. Hyphal and micelial interaction between Agaricus bisporus and Scytalidium thermophilum on agar media. Microb. Ecol 19: 303-309.

Rainey, P.B., 1991. Effect of Pseudomonas putida on hyphal growth of Agaricus bisporus. Mycological Res 95(6): 699-704.

Ryckeboer, J., J. Mergaert, K. Vaes, S. Klammer, D. De Clercq, J. Coosemans, J. Swings, 2003. A survey of bacteria and fungi occurring during composting and self-heating processes. Annals of Microbiology 53(4), 349-410.

Salar, R.K., K.R. Aneja, 2007. Thermophilic fungi: taxonomy and biogeography. J Agric Technol 3:77–107

Samp, R., 2007. Desarrollo de sistemas de procesamiento de composta para el champiñón Agaricus bisporus. In: Sánchez JE, Royse DJ, Leal Lara H (eds) Cultivo, mercadotecnia e inocuidad alimenticia de Agaricus bisporus. El Colegio de la Frontera Sur. 49-56.

Sánchez, J.E., 2007. Uso de hongos termófilos para la preparación de sustratos. In: Sánchez JE, Royse DJ, Leal Lara H (eds) Cultivo, mercadotecnia e inocuidad alimenticia de Agaricus bisporus. El Colegio de la Frontera Sur 65-74.

Sánchez, J.E., L. Mejía, D.J. Royse, 2008. Pangola grass colonized with Scytalidium thermophilum for production of Agaricus bisporus. Bioresource Technol 99(3): 655-662.

Sánchez, J.E., D.J. Royse, 2001. Adapting substrate formulas used for shiitake for production of brown Agaricus bisporus. Bioresource Technol 77:65-69. ISSN 0960-8524.

Sánchez, J.E., D.J. Royse, 2017. La biología, el cultivo, y las propiedades nutricionales y medicinales de las setas, Pleurotus spp. El Colegio de la Frontera Sur. San Cristóbal de las Casas, Mex. 53-61. ISBN: 978-607-8429-47-9.

Sánchez, J.E., D.C. Zied, E. Albertó, 2018. Edible mushroom production in the Americas. In: Tan Q (ed). 9th International Conference on Mushroom Biology and Mushroom Products. WSMBMP. Shanghai. 2-12.

Schwyn, B., J.B. Neilands, 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160(1): 47-56.

Singh, A.V., A. Sharma, B.N. Johri, 2012. Phylogenetic profiling of culturable bacteria associated with early phase of mushroom composting assessed by amplified rDNA restriction analysis. Annals of microbiology 62(2), 675-682.

Singh, H., M.S. Reddy, 2011. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology 47(1), 30-34.

Song, T.T., W.M. Cai, Q.L. Jin, W.L. Feng, L.J. Fan, Y.Y. Shen, F.F. Tian, 2014. Comparison of microbial communities and histological changes in Phase I rice straw-based Agaricus bisporus compost prepared using two composting methods. Scientia Horticulturae 174, 96-104.

Souza, T.P., S.C. Marques, D. Santos, E.S. Dias, 2014. Analysis of thermophilic fungal populations during phase II of composting for the cultivation of Agaricus subrufescens. World J Microbiol Biotechnol 30(9): 2419-2425.

Straatsma, G., J.P. Gerrits, T.M. Gerrits, H.J. Op den Camp, L.J. Van Griensven, 1991. Growth kinetics of Agaricus bisporus mycelium on solid substrate (mushroom compost). Microbiology 137(7), 1471-1477.

Straatsma, G., R.A. Samson, T.W. Olijnsma, H.J. Op den Camp, J.P. Gerrits, L.J. Van Griensven, 1994. Ecology of thermophilic fungi mushroom compost with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Env Microbiol 60(2): 454-458.

Sundara, R., M. Sincha, 1963. Organism phosphate solubilizers in soil. Indian Jounal of Agriculture Science 33: 272-278.

Till, O., 1962. Champignonkultur auf sterilisiertem naehrsubstratum und die wiederverwendung von abgetragenem compost. Mush Sci 5, 127-133.

Torres, E., J.E. Sanchez, G.K. Guillen, D.G. Ramos, D.J. Royse, 2016. Microbial promoters of mycelial growth, fruiting and production of Pleurotus ostreatus. Sydowia 68, 151-161.

Vajna, B., D. Szili, A. Nagy, K. Márialigeti, 2012. An improved sequence-aided T-RFLP analysis of bacterial succession during oyster mushroom substrate preparation. Microbial Ecology 64(3), 702-713.

Vargas, M.C., F. Suarez, M.J. López, J. Moreno, 2007. In vitro Studies on lignocellulose degradation by microbial strains isolated from composting processes. International Biodeterioration and Biodegradation 59(4), 322-328.

Velázquez, M.; A.M. Farnet; G. Mata, J.M. Savoie, 2008. Role of Bacillus spp. in antagonism between Pleurotus ostreatus and Trichoderma harzianum in heat-treated wheat-straw substrates. Bioresource Technol 99(15), 6966-6973.

Vijay, B., A. Pathak, 2014. Exploitation of thermophilic fungi in compost production for white button mushroom (Agaricus bisporus) cultivation-a review. In Proceedings of 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), New Delhi, India, 19-22 November 2014. Volume I and II (pp. 292-308). ICAR-Directorate of Mushroom Research.

Watabe, M.; J.R. Rao; A.R. Murphy, J.E. Moore, 2003. Inhibition of Listeria ivanovii by Paenibacillus lentimorbus isolated from phase II mushroom compost. World J Microbiol Biotechnol 19(8), 875-877.

Weisburg, W.G., S.M. Barns, D.A. Pelletier, D.J. Lane, 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173(2): 697.

White, T.J., T. Bruns, S. Lee, J. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications. (eds. Innis M.A., Gelfand D.H., Sninsky J.J., White T.J.), Academic Press, New York, USA 315–322.

Wood, D.A., 1984. Microbial processes in mushroom cultivation; a large scale solid substrate fermentation. Journal of Chemical Technology and Biotechnology 34(4), 232-240.

Zarenejad, F., B. Yakhchali, I. Rasooli, 2012. Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World J Microbiol Biotechnol 28(1): 99-104.

Zhang, H.L., J.K. Wei, Q.H. Wang, R. Yang, X.J. Gao, Y.X. Sang, P.P. Cai1, G.Q. Zhang, Q.J. Chen, 2019. Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production. Scientific Reports 9:1151 https://doi.org/10.1038/s41598-018-37681-6

Zhang, X., Y. Zhong, S. Yang, W. Zhang, M. Xu, A. Ma, W. Liu, 2014. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Bioresource Technol 170, 183-195.

Publicado
2019-12-31
Sección
Artículos científicos originales