Using mushroom-forming fungi in preventing and reducing mycotoxins in cereal products

Resumen

Antecedentes: El control biológico de las enfermedades de los cereales causadas por hongos micotoxigénicos forma parte de los métodos alternativos a desarrollar para asegurar la producción de alimentos y piensos, reconociendo los efectos negativos que estos hongos tienen sobre el rendimiento de los cultivos y su producción potencial de micotoxinas.

 

Objetivo: Actualizar el conocimiento reciente sobre el potencial de los hongos formadores de hongos como agentes de control biológico de especies de hongos micotoxigénicos, actuando como antagonistas en residuos de cultivos, como fuente de extractos activos con propiedades antifúngicas y / o antimicotoxinas y como agentes detoxificantes en procesos de fermentación en estado sólido en cereales contaminados.

 

Métodos: Se realizó una revisión bibliográfica de los trabajos publicados, se analizan los temas principales así como las especies con mayor potencial de agentes de control biológico de los hongos micotoxingénicos.

 

Resultados y conclusiones: Los hongos formadores de hongos se podrían usar como antagonistas en residuos de cultivos o granos, como fuentes de extractos activos con propiedades antifúngicas y / o antimicotoxinas, y como agentes desintoxicantes. Una integración de estos tres potenciales da lugar a un proceso amigable con el medio ambiente para la producción de granos seguros y hongos comestibles.

Citas

- Ait-Lahsen, H., Soler, A, Rey, M., de la Cruz, J., Monte, E., Llobell, A., 2001. An antifungal exo-α-1,3-glucanase (agn13.1) from the biocontrol fungus Trichoderma harzianum. Appl. Environ. Microbiol. 67: 5833-5839.

-Alberts, J.F., Gelderblom, W.C.A., Botha, A., Van Zyl, W.H., 2009. Degradation of aflatoxin B1 by fungal laccase enzymes. Int. J. Food Microbiol. 135: 47-52.

- Alves, M.J., Ferreira, I.C.F.R, Dias, J., Teixeira, V., Martins, A., Pintado, M., 2013. A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Current Topics Medicinal Chem. 13, 2648-2659.

- Ansari, M.A., Anurag, A., Fatima, Z., Hameed, S. 2013. Natural Phenolic Compounds: A Potential Antifungal Agent. Microb. 189-195.

- Atanasova-Penichon, V., Barreau, C., Richard-Forget, F., 2016. Antioxidant secondary metabolites in cereals: potential involvement in resistance to Fusarium and mycotoxin accumulation. Front. Microbiol., 7: 566.

- Atanasova-Penichon, V., Bernillon, S., Marchegay, G., Lornac, A., Pinson-Gadais, L., Ponts, N., Zehraoui, E., Barreau, C., Richard-Forget, F., 2014. Bioguided isolation, characterization and biotransformation by Fusarium verticillioides of maize kernel compounds that inhibit fumonisin production. Mol. Plant Microbe Interact. 27, 1148–1158.

- Baldrian, P., 2006. Fungal laccases – occurrence and properties FEMS Microbiol. Rev. 30, 215-242.

- Banu, I., Lupu, A., Aprodu, I., 2013. Degradation of zearalenone by laccase enzyme. Sci. Study Res. 14, 79–84.

- Barros, L., Dueñas, M., Ferreira, I. C., Baptista, P., & Santos-Buelga, C., 2009. Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 47, 1076-1079.

- Battilani, P., Toscano, P., Van der Fels-Klerx, H., Moretti, A., Camardo Leggieri, M., Brera, C., Rortais, A., Goumperis, T. and Robinson, T., 2016. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 6, 24328.

- Beekrum, S., Govinden, R., Padayachee, T., and Odhav, B., 2003. Naturally occurring phenols: A detoxification strategy for fumonisin B1. Food Addit. Contam. 20, 490-493.

- Benítez, T., Limón, C., Delgado-Jarana, J., Rey, M., 1998. Glucanolytic and other enzymes and their genes, in: Harman, G.E., Kubicek, C. (Eds.), Trichoderma and Gliocladium: enzymes, biological control and commercial applications, vol. 2. Taylor and Francis, Ltd., London, pp. 101–127.

- Bernardo, D., Cabo, A. P., Novaes-Ledieu, M., & Mendoza, C. G., 2004. Verticillium disease or "dry bubble" of cultivated mushrooms: the Agaricus bisporus lectin recognizes and binds the Verticillium fungicola cell wall glucogalactomannan. Can. J. Microbiol, 50, 729-735.

- Bilska, K., Stuper-Szablewska, K., Kulik, T., Buśko, M., Załuski ,D., Jurczak ,S., Perkowski, J., 2018. changes in phenylpropanoid and trichothecene production by Fusarium culmorum and F. graminearum sensu stricto via exposure to flavonoids. Toxins, 10(3), 110.

- Bleuler-Martinez, S., Schmieder ,S., Aebi, M., Künzler, M., 2012. Biotin-binding proteins in the defence of mushrooms against predators and parasites. Appl. Environ. Microbiol. 78, 8485–8487.

- Bollina, V., Kushalappa, A.C. 2011. In vitro inhibition of trichothecene biosynthesis in Fusarium graminearum by resistance-related endogenous metabolites identified in barley. Mycology 2, 291-296.

- Boutigny, A.L., Barreau, C., Atanasova-Penichon, V., Verdal-Bonnin, M.N., Pinson-Gadais, L., Richard-Forget, F., 2009. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol. Res. 113, 746-753.

- Branà, M.T., Cimmarusti, M.T., Haidukowski, M., Logrieco, A. F., Altomare, C., 2017. Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii). PloS One, 12(8): e0182574.

- Chang, B.V., Fan, S.N., Tsai, Y.C., Chung, Y.L., Tu, P.X., Yang, C.W., 2018. Removal of emerging contaminants using spent mushroom compost. Sci.Total Environ. 634, 922-933.

- Chen, J.T., Huang, J.W., 2009. Control of plant diseases with secondary metabolite of Clitocybe nuda. New Biotechnol. 26, 193-198.

- Chen, W., Li, C., Zhang, B., Zhou, Z., Shen, Y., Liao, X., Yang, J., Wang, Y., Li, X., Li, Y., Shen, X.L., 2018. Advances in biodetoxification of Ochratoxin A-A review of the past five decades. Front. Microbiol. 9, 1386. DOI: 10.3389/fmicb.2018.01386

- Chu, K.T., Xia, L.X., Ng, T.B., 2005. Pleurostrin, an antifungal peptide from the oyster mushroom. Peptides . 26, 2098–2103.

- D’Mello, J.P.F., McDonald, A.M.C., Rinna, R., 2001. Effect of azoxystrobin on mycotoxin production in a carbendazim-resistant strain of Fusarium sporotrichioides. Phytoparasitica 29, 431-440.

- Da Silva, E.O., Bracarense, A.P.F.L., Oswald, I.P., 2018. Mycotoxins and oxidative stress: where are we? World Mycotoxins J. 11, 113-134.

- Davitashvili, E., Kapanadze, E., Kachlishvili, E., Khardziani, T., Elisashvili, V., 2008. Evaluation of higher basidiomycetes mushroom lectin activity in submerged and solid-state fermentation of agro-industrial residues. Int. J. Med. Mushrooms, 10, 171–179.

- Davitashvili, E., Kapanadze, E., Kachlishvili, E., Metreveli, E., Elisashvili, V., 2010. Comparative study of the hemagglutinating activity of lectins isolated from different developmental stages of culinary-medicinal oyster mushroom, Pleurotus ostreatus (Jacq.: Fr.) Kumm. (Agaricomycetideae). Int. J. Med. Mushrooms, 12, 43-50.

- Davitashvili, E., Kapanadze, E., Kachlishvili, E., Elisashvili, V., 2011. Lectin activity of species of genus Cerrena S.F. Gray (Aphyllophoromycetideae) in submerged fermentation of lignocellulosic materials. Int. J. Med. Mushrooms 13, 159–166.

- Dakshinamurti, K., Dakshinamurti, S., Czubryt, M. P., 2017. Effects of biotin deprivation and biotin supplementation, in: Preedy V., Patel V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham, pp. 1-21.

- Deng, J.J., Huang, W.Q., Li, Z.W., Lu, D.L., Zhang, Y., Luo, X.C., 2018. Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzym. Microb. Technol. 112, 35-42.

- Dors, G.C., Caldas, S.S., dos Santos Hackbart, H.C., Primel, E.G., Fagundes, C.A.A., Badiale-Furlong, E., 2013. Fungicides and the effects of mycotoxins on milling fractions of irrigated rice. J. Agric. Food Chem. 61, 1985-1990.

Dubost, N. J., Beelman, R. B., & Royse, D. J. (2007). Influence of selected cultural factors and postharvest storage on ergothioneine content of common button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae). International Journal of Medicinal Mushrooms, 9, 163-176).

- Dubos, T., Pasquali, M., Pogoda, F., Hoffmann, L., Beyer, M., 2011. Evidence for natural resistance towards trifloxystrobin in Fusarium graminearum. Eur. J. Plant Pathol. 130, 239-248.

- Dündar, A., Okumus, V., Özdemir, S., Çelik K.S., Boga, M., Ozcagli, E., Ozhan, G., Yildiz, A., 2015. Antioxidant, antimicrobial, cytotoxic and anticholinesterase activities of seven mushroom species with their phenolic acid composition. J. Horticulture 2: 161 doi:10.4172/2376-0354.1000161

- Eisele, N., Linke, D., Nimtz, M., Berger, R.G., 2011. Heterologous expression, refolding and characterization of a salt activated subtilase from Pleurotus ostreatus. Process Biochem., 46, 1840–1846.

- Erjavec, J., Kos, J., Ravnikar, M., Dreo, T., Sabotič, J., 2012. Proteins of higher fungi – from forest to application. Trends Biotechnol. 30, 259-273.

- Essig, A., Hofmann, D., Münch, D., Gayathri, S., Künzler, M., Kallio, P. T., Sahl, H.G., Wider, G., Schneider, T., Aebi, M., 2014. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J. Biol. Chem. 289, 34953-34964.

- Faraco, V., Palmieri, G., Festa, G., Monti, M., Sannia, G., Giardina, P., 2005. A new subfamily of fungal subtilases: structural and functional analysis of a Pleurotus ostreatus member. Microbiology, 151, 457-466.

- Ferreira, I.C.F.R., Barros, L., Abreu, R.M.V, 2009. Antioxidants in wild mushrooms. Curr. Med. Chem., 16, 1543–1560.

- Ferrochio, L., Cendoya, E., Farnochi, M.C., Massad, W., Ramírez, M.L., 2013. Evaluation of ability of ferulic acid to control growth and fumonisin production of Fusarium verticillioides and Fusarium proliferatum on maize based media. Int. J. Food Microbiol. 167, 215–220.

- Ferruz, E., Atanasova‐Pénichon, V., Bonnin‐Verda,l M.N., Marchegay, G., Pinson‐Gadais, L., Ducos, C., Lorán, S., Ariño, A., Barreau, C., Richard‐Forget, F., 2016. Effects of phenolic acids on the growth and production of T‐2 and HT‐2 toxins by Fusarium langsethiae and F. sporotrichioides. Molecules 21, 449.

Gan, C. H., Amira, N. B., & Asmah, R. (2013). Antioxidant analysis of different types of edible mushrooms (Agaricus bisporous and Agaricus brasiliensis). International Food Research Journal, 20(3), 1095-1102

- Gąsecka, M., Magdziak, Z., Siwulski, M., Mleczek, M., 2018. Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus. Eur. Food Res. Technol. 244, 259–268.

- Gauthier, L., Verdal M.N., Marchegay, G., Pinson-Gadais, L. ,Ducos, C., Richard-Forget, F., Atanasova-Penichon V., 2016. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: new insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int. J. Food Microbiol. 221, 61-68.

- Gil-Ramírez, A., Pavo-Caballero, C., Baeza, E., Baenas, N., Garcia-Viguera, C., Marín, F.R., Soler-Rivas, C., 2016. Mushrooms do not contain flavonoids. J. Functional Foods 25, 1–13.

- Gilardoni, G., Clericuzio, M., Tosi, S., Zanoni, G., Vidari, G., 2007. Antifungal acylcyclopentenediones from fruiting bodies of Hygrophorus chrysodon. J. Nat. Prod. 70, 137-139.

- Guo, Y., Wang, H., Ng, T.B., (2005) Isolation of trichogin, an antifungal protein from fresh fruiting bodies of the edible mushroom Tricholoma giganteum. Peptides 26(4):575–580

- Haidukowski, M., Pascale, M., Perrone, G., Pancaldi, D., Campagna, C., Visconti, A., 2005. Effect of fungicides on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and Fusarium culmorum. J. Sci. Food Agric. 85, 191-198.

- Han, J.R., 2003. Solid-state fermentation of cornmeal with the basidiomycete Hericium erinaceum for degrading starch and upgrading nutritional value. Int. J. Food Microbiol. 80, 61-66

- Han, J.R., An, C.H., Yuan, J.M., 2005. Solid-state fermentation of cornmeal with the basidiomycete Ganoderma lucidum for degrading starch and upgrading nutritional value. J. Appl. Microbiol. 99, 910-915.

- Heleno, S.A., Barros, L., Martins, A., Queiroz, M.J.R., Santos-Buelga, C., Ferreira, I.C., 2012. Fruiting body, spores and in vitro produced mycelium of Ganoderma lucidum from Northeast Portugal: A comparative study of the antioxidant potential of phenolic and polysaccharidic extracts. Food Res. Int. 46, 135-140.

- Heleno, S.A., Ferreira, I.C., Esteves, A.P., Ćirić, A., Glamočlija, J., Martins, A.; Soković, M., Queiroz, M.J., 2013. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p –hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food Chem. Toxicol. 58, 95–100

- Hiscox, J., O'Leary, J., Boddy, L., 2018. Fungus wars: basidiomycete battles in wood decay. Stud. Mycology 89, 117-124.

- Hong, S.Y., Roze, L.V, Wee, J., Linz, J.E., 2013. Evidence that a transcription factor regulatory network coordinates oxidative stress response and secondary metabolism in aspergilli. Microbiologyopen 2, 144–160.

- Ioos, R., Belhadj, A., Menez, M., 2004. Occurrence and distribution of Microdochium nivale and Fusarium species isolated from barley, durum and soft wheat grains in France from 2000 to 2002. Mycopathologia 158, 351-362.

- Jurado, M., Marín, P., Magan, N., González-Jaén, M.T., 2008. Relationship between solute and matric potential stress, temperature, growth, and FUM1 gene expression in two Fusarium verticillioides strains from Spain. Appl. Environ. Microbiol. 74, 2032-2036.

- Kelly, B.J., Langan, J.P., 2013. Method of myceliation of agricultural substates for producing functional foods and nutraceuticals. U.S. Patent No. 9,427,008.

- Kim, J.H., Campbell, B.C., Mahoney, N., Chan, K. L., Molyneux, R.J., May, G.S., 2007. Enhanced activity of strobilurin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response. Let. Appl. Microbiol. 45, 134-141.

- Kim, M.Y., Seguin, P., Ahn, J.K., Kim, J.J., Chun, S.C., Kim, E.H., Seo, S.H., Kang, E.Y., Kim, S.L., Park, Y.J., Ro, H.M., Chung, I.M., 2008. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agric. Food Chem. 56, 7265–7270.

- Lahouar, A., Marin, S., Crespo-Sempere, A., Saïd, S., Sanchis, V., 2016. Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds. Revista Argentina de Microbiología, 48, 78-85.

- Lam, S.K., Ng, T.B., 2001a. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem. Biophys. Res. Commun. 285, 1071–1075.

- Lam, S.K., Ng, T.B, 2001b. First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch. Biochem. Biophys. 393, 271–280.

- Largeteau, M.L., Savoie, J.M., 2010. Microbially-induced diseases of Agaricus bisporus: biochemical mechanisms and impact on commercial mushroom production. Mini Review. Appl. Microbiol. Biotechnol. 86, 63-73.

- Largeteau, M.L., Callac, P., Navarro-Rodriguez, A.M., Savoie, J.M., 2011. Diversity in the ability of Agaricus bisporus wild isolates to fruit at high temperature (25 °C). Fungal Biol. 115, 1186-1195.

- Legrand, F., Picot, A., Cobo-Díaz, J. F., Chen, W., Le Floch, G., 2017. Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biol. Control 113, 26-38.

- Leplat, J., Friberg, H., Abid, M., Steinberg, C., 2013. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron. Sustain. Dev. 33, 97–111.

- Li, H.B., Wang, M.Y., Hu, L.B., Mo, H.Z., Pan, D.D, 2015. Structural Identification of Lentinus edodes cellulose derivative that inhibits aflatoxin production by Aspergillus flavus. Trop. J. Pharm. Res. 14, 495-501.

- Li, J., Gu, F., Wu, R., Yang, J., Zhang, K.Q., 2017. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Scientific Reports 7, 45456.

- Lin, P., Wong, J.H., Ng, T.B., 2010. A defensin with highly potent antipathogenic activities from the seeds of purple pole bean. Biosci. Rep. 30, 101–109

- Loi, M., Fanelli, F., Zucca, P., Liuzzi, V.C., Quintieri, L., Cimmarusti, M.T., Monaci, L., Miriam Haidukowski, M., Logrieco A.F., Sanjust, E., Mulè, G., 2016. Aflatoxin B1 and M1 degradation by Lac2 from Pleurotus pulmonarius and redox mediators. Toxins 8, 245-261.

- Loi, M., Fanelli, F., Liuzzi, V.C., Logrieco, A.F., Mulè, G., 2017. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins 9, 111

- Loi, M., Fanelli, F., Cimmarusti, M. T., Mirabelli, V., Haidukowski, M., Logrieco, A. F., .Caliandro, R, Mulè, G., 2018. In vitro single and combined mycotoxins degradation by Ery4 laccase from Pleurotus eryngii and redox mediators. Food Control 90, 401-406.

- Luo, D.Q., Wang, F., Bian, X.Y., Liu, J.K., 2005. Rufuslactone, a new antifungal sesquiterpene from the fruiting bodies of the basidiomycete Lactarius rufus. J. Antibiotics 58, 456-459.

- Luongo, L., Galli, M., Corazza, L., Meekes, E., Haas, L.D., Van Der Plas, C.L., Köhl, J., 2005. Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol Sci. Technol. 15, 229–242.

López-Vázquez, E., Prieto-García, F., Gayosso-Canales, M., Sánchez, E. O., & Ibarra, J. V. (2017). Phenolics acids, flavonoids, ascorbic acid, β-glucans and antioxidant activity in mexican wild edible mushrooms. Italian Journal of Food Science, 29(4): 766-774.

- Magan, N., Challen, M.P., Elliot, T.J., 1995. Osmotic, matric potential and temperature effects on vitro growth of Agaricus bisporus and A. bitorquis strains. In Elliot T.J. (ed.), Science and cultivation of edible fungi. Balkema, Rotterdam, p. 773–780

- Maggio-Hall, L.A., Wilson, R.A., Keller, N.P., 2005. Fundamental contribution of β-oxidation topolyketide mycotoxin production in planta. Mol. Plant Microbe Interact. 18, 783–793.

- Marin, S., Sanchis, V., Magan, N., 1995. Water activity, temperature and pH effects on growth of Fusarium moniliforme and F. proliferatum isolates from maize. Can. J. Microbiol. 41, 1063–1070.

- Martinez Tuppia, C., Atanasova‐Penichon, V., Chéreau, S., Ferrer, N., Marchegay, G., Savoie, J.M., Richard‐Forget, F., 2017. Yeast and bacteria from ensiled high moisture maize grains as potential mitigation agents of fumonisin B1. J. Sci. Food Agric. 97, 2443-2452.

- Martins, N.F., Bresso, E., Togowa, R.C., Urban, M., Antoniw, J., Maigret, B., Hammond-Kosack, K., 2016. Searching for novel-targets to control wheat head blight disease- I- protein identification, 3 D modeling and virtual screening. Adv. Microbiol. 6, 811-830.

- Mata, G., Savoie, J.M., Delpech, P., Olivier, J.M., 1998. Reductions of the incidence of Trichoderma spp. using substrate supplementation with peat and an alternative spawn during cultivation of Lentinula edodes on pasteurised straw. Agronomie 18, 515-520

- McCormick, S.P., 2013. Microbial Detoxification of Mycotoxins. J. Chem. Ecol. 39, 907–918.

- Mierziak, J., Kostyn, K., Kulma, A., 2014.Flavonoids as important molecules of plant interactions with the environment. Molecules 19, 16240–16265.

- Mikiashvili, N.A.; Elisashvili, V.; Wasser, S.P., Nevo, E., 2006. Comparative study of lectin activity of higher basidiomycetes. Int. J. Med. Mushrooms 1, 31–38.

- Mohd Hanafi, F.H., Rezania, S., Mat Taib, S., Md Din, M. F., Yamauchi, M., Sakamoto, M., Hara, H., Park, J., Ebrahimi, S.S., 2018. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview. J. Mat. Cycles Waste Manag. 20, 1383-1396.

- Mohsen, S.F., Abbassy, M.A., Rabea, E.I., Abou-Taleb, H.K., 2018. Isolation and antifungal activity of plant lectins against some plant pathogenic fungi. Alexandria Science Exchange Journal 39, 161-167.

- Money, N.P., 2016. Are mushrooms medicinal? Fungal Biol. 120, 449-453.

- Montibus, M., Ducos, C., Bonnin-Verdal, M.-N., Bormann, J., Ponts, N., Richard Forget, F., Barreau, C., 2013.The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum. PLoSONE 8:e83377.

- Motomura, M., Toyomasu, T., Mizuno, K., Shinozawa, T., 2003. Purification and characterization of an aflatoxin degradation enzyme from Pleurotus ostreatus. Microbiol. Res. 158, 237-42.

- Muszyńska, B, Kała, K., Sułkowska-Ziaja, K., Szewczy,k A., Łojewsk,i M., Rojowski, J., 2015. Analysis of the content of phenolic compounds in in vitro culture of some edible mushrooms (Basidiomycota). Medicina Internacia Revuo. 26, 146-152.

- Ng, T.B., Cheung, R.C.F., Wong, J.H., Chan, Y.S., Dan, X., Pan, W., Wang, H., Guan, S., Chan K., Ye X.Y., Liu, F., Xia, L., Chan, W.Y., 2016. Fungal proteinaceous compounds with multiple biological activities. Appl. Microbiol. Biotechnol. 100, 6601-6617.

- Ngai, P.H.K., Ng T.B. 2003. Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells. Life Sci.73, 3363–3374.

- Ngai, P.H.K., Ng, T.B. 2004. A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor-caju. Peptides 25(1):11–17

- Ngai, P.H.K., Zhao, Z., Ng, T.B., 2005.Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides 26, 191–196.

- Nikitina, V.E., Loshchinina, E.A., Vetchinkina, E.P., 2017. Lectins from mycelia of basidiomycetes. Int. J. Mol. Sci. 18, 1334.

- Nowacka, N., Nowak, R., Drozd, M., Olech, M., Los, R., Malm, A., 2014. Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT-Food Sci. Technol. 59, 689-694.

- Oka, K., Ishihara, A., Sakaguchi, N, Nishino, S., Parada, R.Y., Nakagiri, A., Otani, H., 2015. Antifungal activity of volatile compounds produced by an edible mushroom Hypsizygus marmoreus against phytopathogenic fungi. J. Phytopathol. 163, 987–996.

- Okull, D.O., Beelman, R.B., Gourama, H., 2003. Antifungal activity of 10-oxo-trans-8-decenoic acid and 1-octen-3ol against Penicillium expansum in potato dextrose agar medium. J. Food Protect. 66, 1503-1505.

- Othman, A.M., Elsayed, M.A., Elshafei, A M., Hassan, M.M., 2018. Purification and biochemical characterization of two isolated laccase isoforms from Agaricus bisporus CU13 and their potency in dye decolorization. Int. J. Biol. Macromolecules 113, 1142-1148.

- Palacios, I., Lozano, M., Moro, C., D’Arrigo, M., Rostagno, M.A., Martínez, J.A., García-Lafuente, A., Guillamón, E., 2011. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 128, 674–678.

- Palazzini, J.M., Yerkovicha, N., Alberione, E., Chiotta, M., Chulze, S.N., 2017. An integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions. Plant Gene 9, 13-18.

- Pani, G., Scherm, B., Azara, E., Balmas, V., Jahanshiri, Z., Carta, P., Fabbri, D., Dettori, M.A., Fadda, A., Dessì, A., Dallocchio, R., Migheli, Q., Delogu G., 2014. Natural and natural-like phenolic inhibitors of type B trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum. J. Agric. Food Chem. 62:4969–4978.

- Park, B.T., Na, K.H., Jung, E.C, Park, J.W., Kim, H.H., 2009. Antifungal and anticancer activities of a protein from the mushroom Cordyceps militaris. Korean J. Physiol. Pharmacol. 13, 49–54.

- Peng, Z., Chen, L., Zhu, Y., Huang, Y., Hu, X., Wu, Q., Yang, W., 2018. Current major degradation methods for aflatoxins: A review. Trends Food Sci. Technol. 80, 155-156.

- Philippoussis, A., Diamantopoulou. P. 2011. Agro-food industry wastes and agricultural residues conversion into high value products by mushroom cultivation. In Savoie, J.M., Foulongne-Oriol, M., Largeteau M., Barroso, G., (Eds). Proceedings of the 7th International conference on mushroom biology and mushroom products (ICMBMP7), France 339–351

- Picot, A., Atanasova-Pénichon, V., Pons, S., Marchegay, G., Barreau, C., Pinson-Gadais, L., Roucolle, J., Daveau, F., Caron, D., Richard-Forget, F., 2013. Maize kernel antioxidants and their potential involvement in Fusarium Ear Rot resistance. J. Agric. Food Chem. 61, 3389–3395.

- Ponts N., 2015. Mycotoxins are a component of Fusarium graminearum stress-response system. Opinion article. Frontiers Microbiol. 6, 1234.

- Ponts, N., Pinsons-Gadais, L., Boutigny, A.L., Barreau, C., Richard-Forget, F., 2011. Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. Phytopathol. 101, 929–934.

- Ramirez, M.L., Chulze, S., Magan, N., 2006. Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Inter. J. Food Microbiol. 106, 291-296.

- Reis, F.S., Martins, A., Barros, L., Ferreira, I.C.F.R., 2012a. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food Chem. Toxicol. 50, 1201–1207.

- Reis, F.S., Barros, L., Calhelha, R.C., Ćirić, A., Van Griensven, L.J., Soković, M., Ferreira, I.C., 2013. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem Toxicol. 62, 91-99.

- Reis, F.S.; Stojković, D.; Soković, M.; Glamočija, J.; Ćirić, A.; Barros, L.; Ferreira, I.C.F.R., 2012b. Chemical characterization of Agaricus bohusii, antioxidant potential and antifungal preserving properties when incorporated in cream cheese. Food Res. Int. 48, 620– 626.

- Reverberi, M., Di Mario, F., Tomati, U., 2004. β-Glucan synthase induction in mushrooms grown on olive mill wastewaters. Appl. Microbiol. Biotechnol. 66, 217-225.

- Reverberi, M., Fabbri, A.A., Zjalic, S., Ricelli, A., Punelli, F., Fanelli, C., 2005. Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl. Microbiol. Biotechnol. 69. 207-215.

- Reverberi, M., Zjalic, S., Ricelli, A., Fabbri, A.A., Fanelli, C., 2006. Oxidant/antioxidant balance in Aspergillus parasiticus affects aflatoxin biosynthesis. Mycotoxin Res. 22, 39-47.

- Reverberi, M., Zjalic, S., Ricelli, A., Punelli,F., Camera, E., Fabbri, C., Picardo, M., Fanelli, C. Fabbri, A.A. 2008. Modulation of antioxidant defense in Aspergillus parasiticus is involved in aflatoxin biosynthesis: a role for the ApyapA gene. Eukaryotic Cell 7, 988-1000.

- Rodrigues A.G., 2016. Chapter 6 – Secondary Metabolism and Antimicrobial Metabolites of Aspergillus. In New and Future Developments in Microbial Biotechnology and Bioengineering. Aspergillus System Properties and Applications. Gupta, V.K. (Ed). Elsevier. pp. 81-86.

- Ryan, C.A., 1987. Oligosaccharide signalling in plants. Ann. Rev. Cell BioI. 3, 295-317.

- Sabotič, J. Trček T, Popovič T, Brzin J., 2007. Basidiomycetes harbour a hidden treasure of proteolytic diversity. J. Biotechnol. 128, 297–307.

- Samapundo, S., Devlieghere, F., De Meulenaer, B., Geeraerd, A. H., Van Impe, J. F., Debevere, J. M., 2005. Predictive modelling of the individual and combined effect of water activity and temperature on the radial growth of Fusarium verticilliodes and F. proliferatum on corn. Int. J. Food Microbiol. 105, 35-52.

- Sánchez C., 2004. Modern aspects of mushroom culture technology. Appl. Microbiol. Biotechnol. 64, 756–762.

- Sarrocco, S., Vannacci, G., 2018. Preharvest application of beneficial fungi as a strategy to prevent postharvest mycotoxin contamination: A review. Crop Potection 110, 160-170.

- Savoie, J.-M., 2008. Reactive Oxygen Species and the strategy of antioxidant defence in mushrooms, in Proceedings of the Sixth International Conference on Mushroom Biology and Mushroom Products. Lelley, J.L. and Buswell J.A., eds. GAMU, Krefeld, Germany. pp 8-20.

- Savoie, J.M., Minvielle, N., Largeteau, M.L., 2008. Radical-scavenging properties of extracts from the white button mushroom, Agaricus bisporus. J. Sci. Food Agric. 88:970–975.

- Savoie, J.M., Foulongne Oriol, M., Barroso, G., Callac, P., 2013. Genetics and genomics of cultivated mushrooms, application to breeding of Agarics. In the Mycota, Vol.11: Agricultural Applications. Kempken, F., ed. Springer, Berlin. pp 3-33.

- Scaglioni, P.T., de Oliveira Garcia, S., Badiale-Furlong, E., 2018. Inhibition of in vitro trichothecenes production by microalgae phenolic extracts. Food Res. Int. In press. https://doi.org/10.1016/j.foodres.2018.07.008

- Scarpari, M., Bello, C., Pietricola, C., Zaccaria, M., Bertocchi, L., Angelucci, A., Reverberi, M., 2014. Aflatoxin control in maize by Trametes versicolor. Toxins 6, 3426-3437.

- Scarpari, M., Parroni, A., Zaccaria, M., Fattorini, L., Bello, C., Fabbri, A.A., Bianchi, G., Scala, V., Zjalic, S., Fanelli C., 2016. Trametes versicolor bioactive compounds stimulate Aspergillus flavus antioxidant system and inhibit aflatoxin synthesis. Plant Biosystems 150, 653-659.

- Scarpino, V., Reyneri, A., Sulyok, M., Krska, R., Blandino, M., 2015. Effect of fungicide application to control Fusarium head blight and 20 Fusarium and Alternaria mycotoxins in winter wheat (Triticum aestivum L.). World Mycotoxin J. 8, 499-510.

- Shah, L., Ali, A., Yahya, M., Zhu, Y., Wang, S., Si, H., Ma, C., 2018. Integrated control of Fusarium head blight and deoxynivalenol mycotoxin in wheat. Plant Pathol. 67, 532-548.

- Shen, H.S., Shao, S., Chen, J.C., Zhou, T., 2017. Antimicrobials from mushrooms for assuring food safety. Comprehensive Rev. Food Sci. Food Safety 16, 316-329.

- Silva, P.M., Gonçalves, S., Santos N.C., 2014. Defensins: antifungal lessons from eukaryotes. Frontiers Microbiol. 5, 97.

- Singh A.K., Chhatpar H.S., 2011. Purification, characterization and thermodynamics of antifungal protease from Streptomyces sp. A6. J. Basic Microbiol. 51, 424–432.

- Sivanandhan S., Khusro A., Paulraj M.G., Ignacimuthu S., AL-Dhabi N.A. 2017. Biocontrol properties of basidiomycetes: an overview. J. Fungi 3, 2.

- Spremo, N.R., Tesanović, K.D., Rakić, M.S., Janjušević, L.N., Ignjatov, M.V., Bjelić, D.Đ., Karaman, M.A., 2017. Antifungal activity of macrofungi extracts on phytopathogenic fungal strains of genera Fusarium sp. and Alternaria sp. Matica Srpska J. Natural Sci. 133, 231-234.

- Takakura, Y., Oka, N., Suzuki, J., Tsukamoto, H., Ishida, Y., 2012. Intercellular production of tamavidin 1, a biotin-binding protein from tamogitake mushroom, confers resistance to the blast fungus Magnaporthe oryzae in transgenic rice. Mol. Biotechnol. 51, 9-17.

- Thevissen, K., Ghazi, A., De Samblanx, G. W., Brownlee, C., Osborn, R. W., Broekaert, W. F., 1996. Fungal membrane responses induced by plant defensins and thionins. J. Biol. Chem. 271, 15018–15025.

- Tolaini, V., Zjalic, S., Reverberi, M., Fanelli, C., Fabbri, A.A., Del Fiore, A., Ricelli, A., 2010. Lentinula edodes enhances the biocontrol activity of Cryptococcus laurentii against Penicillium expansum contamination and patulin production in apple fruits. Int. J. Food Microbiol. 138, 243-249.

- Vaz, J.A., Barros, L., Martins, A., Morais, J.S., Vasconcelos, M.H., Ferreira, I.C., 2011. Phenolic profile of seventeen Portuguese wild mushrooms. LWT-Food Sci. Technol. 44, 343-346.

- Vetchinkina, E.P.; Pozdnyakova, N.N.; Nikitina, V.E., 2008. Laccase and lectin activities of intracellular proteins produced in a submerged culture of the xylotrophic basidiomycete Lentinus edodes. Curr. Microbiol. 57, 381–385.

- Vincelli, P., 2012. QoI (Strobilurin) Fungicides: Benefits and Risks. APS, Topics Plant Pathol. DOI: 10.1094/PHI-I-2002-0809-02

- Walker, A.S., Auclair, C., Gredt, M., Leroux, P., 2009. First occurrence of resistance to strobilurin fungicides in Microdochium nivale and Microdochium majus from French naturally infected wheat grains. Pest Manag. Sci. 65, 906-915.

- Wang, H.X., Ng, T.B., 2000. Flammulin: a novel ribosome-inactivating protein from fruiting bodies of the winter mushroom Flammulina velutipes. Biochem. Cell Biol. 78, 699-702.

- Wang, H.X., Ng, T.B., 2001. Isolation of pleuturegin, a novel ribosome-inactivating protein from fresh sclerotia of the edible mushroom Pleurotus tuber-regium. Bioch. Biophysical Res. Com. 288, 718-721.

- Wang, H., Ng, T.B., 2004. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides 25, 1–5.

- Wang, H., Ng, T.B., Liu, Q., 2004. Alveolarin, a novel antifungal polypeptide from the wild mushroom Polyporus alveolaris. Peptides 25, 693–696.

- Wang, H., Ng, T.B. 2006. Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides 27, 27–30.

- Wang, J., Wang, H., Xia, X.M., Li, P.P., Wang, K.Y., 2013. Synergistic effect of Lentinula edodes and Pichia membranefaciens on inhibition of Penicillium expansum infections. Postharvest Bio. Technol. 81, 7-12.

- Wei, Q., Liao Y, Chen Y, Wang S-H, Xu Y, Tang, L., Chen, F., 2005. Isolation, characterisation and antifungal activity of β β-1,3-glucanase from seeds of Jatropha curcas. South Afr. J. Bot. 71, 95–99.

- Wilson, N.M., McMaster, N., Gantulga, D., Soyars, C., McCormick, S. P., Knott, K., Schmale, D.G., 2017. Modification of the mycotoxin deoxynivalenol using microorganisms isolated from environmental samples. Toxins, 9, 141-

- Wong, J.H., Ng, T.B., Cheung, R.C., Ye, X.J., Wang, H.X., Lam, S.K., Xia, L.X., 2010. Proteins with antifungal properties and other medicinal applications from plants and mushrooms. Appl. Microbiol. Biotechnol. 87, 1221-1235.

- Wong, J.H., Ng, T.B., Wang, H., Sze, S.C.W., Zhang, K.Y., Li, Q., Lu, X., 2011. Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine 18, 387–392.

- Xue, A.G., Chen, Y.H., Sant’anna, S.M.R., Voldeng, H.D., Fedak, G., Savard, M.E., Harman, G.E., 2014. Efficacy of CLO-1 biofungicide in suppressing perithecial production by Gibberella zeae on crop residues. Can. J. Plant Pathol. 36, 161-169.

- Yahia, E.M., Gutiérrez-Orozco, F., Moreno-Pérez, M.A., 2017. Identification of phenolic compounds by liquid chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico and determination of their antioxidant activity and bioactive compounds. Food Chem.226, 14–22.

- Yehia, R.S., 2014. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Braz. J. Microbiol. 45, 127–133.

- Zervakis, G., Philippoussis, A., Ioannidou, S., Diamantopoulou, P., 2001. Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiologica 46, 231-234.

- Zhai F.H., Wang Q., Han J.R., 2015. Nutritional components and antioxidant properties of seven kinds of cereals fermented by the basidiomycete Agaricus blazei. J. Cereal Sci. 65, 202-208

- Zhao, X., Zhi, Q.Q., Jie-Ying Li, J.Y., Nancy, P., Keller N. P., He Z.M., 2018.The antioxidant gallic acid inhibits aflatoxin formation in Aspergillus flavus by modulating transcription factors FarB and CreA. Toxins 10, 270.

- Zhu, Y., Hassan, Y.I., Lepp, D., Shao, S., & Zhou, T., 2017. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins, 9(4), 130.

- Zjalic, S., Reverberi, M., Ricelli, A., Granito, V. M., Fanelli, C., Fabbri, A.A., 2006. Trametes versicolor: a possible tool for aflatoxin control. Int. J. Food Microbiol. 107, 243-249.

Publicado
2019-12-31
Sección
Revisiones