La evolución de la simbiosis ectomicorrízica desde la perspectiva genómica

Palabras clave: Origen evolutivo, Patrones de diversificación, Genómica funcional

Resumen

Antecedentes: En los genomas de los hongos ectomicorrízicos están las huellas de los distintos motores evolutivos, que los transformaron y les confirieren sus características fisiológicas y ecológicas.

Objetivos: Analizar los patrones relativos a la evolución y a la genómica funcional de los hongos ectomicorrízicos.

Métodos: Se revisó la bibliografía sobre historia evolutiva, diversificación, genómica funcional y genómica comparativa de hongos ectomicorrízicos.

Resultados y conclusiones: Los hongos ectomicorrízicos evolucionaron a partir de ancestros saprobios con un pico de diversificación en el límite Jurásico-Cretácico y otro a partir del Paleoceno. El estilo de vida ectomicorrízico ha generado diversificación en muchos de los linajes que lo adoptaron. La múltiple y anacrónica pérdida de enzimas degradadoras de pared celular vegetal parece ser la única característica común. La reinvención de la comunicación con la planta, mediante el desarrollo de nuevos genes huérfanos es una característica de algunos linages. La actividad de transposones ha incrementado el tamaño de sus familias génicas. Se hace evidente el mosaico evolutivo y funcional que este diverso y heterogéneo grupo desarrolló a través de su evolución independiente. Futura investigación podrá esclarecer fenómenos como el continuo saprotrofía-biotrofía, las vías de regulación genética entre simbiontes y la preferencia por hospedero.

Biografía del autor

Rodolfo Enrique Ángeles Argáiz, Instituto de Biología, Universidad Nacional Autónoma de México
Nacido el 26 de diciembre de 1986 en la Ciudad de México. Biólogo por la UAEH y M. en C. Biológicas por la UNAM. Actualmente estudiante de doctorado en Bioogía experimental en la UNAM. Con interés en la Micología, Etnomicología, Biología Molecular, Biotecnología y Genómica.
Roberto Garibay Orijel, Instituto de Biología, Universidad Nacional Autónoma de México
Nacido el 14 de agosto de 1976 en la Ciudad de México. Biólogo y Doctor por la UNAM. Actualmente investigador titular y jefe del Laboratorio de Sistemática, Ecología y Aprovechamiento de Hongos Ectomicorrízicos, del Instituto de Biología, UNAM. Con interés en la Micología, Etnomicología, Biología Molecular, Sistemática y Ecología.

Citas

Alvarez-Manjarrez, J., R. Garibay-Orijel, M. E. Smith, 2018. Caryophyllales are the main hosts of a unique set of ectomycorrhizal fungi in a Neotropical dry forest. Mycorrhiza 28: 103-115.

Beimforde, C., N. Schäfer, H. Dörfelt, P. C. Nascimbene, H. Singh, J. Heinrichs, …A. R. Schmidt, 2011. Ectomycorrhizas from a Lower Eocene angiosperm forest. New Phytologist 192: 988-996.

Bonito, G., M. E. Smith, M. Nowak, R. A. Healy, G. Guevara, E. Cázares ... C. Murat, 2013. Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PloS one 8: e52765.

Bödeker, I., K. E. Clemmensen, W. Boer, F. Martin, A. Olson, B. D. Lindahl, 2014. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytologist 203: 245-256.

Brown, J. H., 2014. Why are there so many species in the tropics?. Journal of biogeography 41: 8-22.

Brundrett, M. C., 2002. Coevolution of roots and mycorrhizas of land plants. New phytologist 154: 275-304.

Brundrett, M. C., 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320: 37-77.

Brundrett, M. C., L. Tedersoo, 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220: 1108-1115.

Bruns, T. D., T. M. Szaro, M. Gardes, K. W. Cullings, J. J. Pan, D. L. Taylor, ... Y. Li, 1998. A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis. Molecular Ecology 7: 257-272.

Chang, Y., A. Desirò, H. Na, L. Sandor, A. Lipzen, A. Clum, … M. E. Smith, 2018. Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. New Phytologist doi: 10.1111/nph.15613.

Comandini, O., A. C. Rinaldi, T. W. Kuyper, 2012. Measuring and estimating ectomycorrhizal fungal diversity: a continuous challenge. In: M. Pagano, M. (ed.), Mycorrhiza: occurrence in natural and restored environments. Nova Science Publishers, Nueva York. pp. 165-200.

Corrales, A., A. E. Arnold, A. Ferrer, B. L. Turner, J. W. Dalling, 2016. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza 26: 1-17.

Daguerre, Y., E. Levati, J. Ruytinx, E. Tisserant, E. Morin, A. Kohler, ... F. Martin, 2017. Regulatory networks underlying mycorrhizal development delineated by genome-wide expression profiling and functional analysis of the transcription factor repertoire of the plant symbiotic fungus Laccaria bicolor. BMC genomics 18: 737.

Delaux, P. M., K. Varala, P. P. Edger, G. M. Coruzzi, J. C. Pires, J. M. Ané, 2014. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genetics 10: e1004487.

Den Bakker, H. C., G. C. Zuccarello, T. H. Kuyper, M. E. Noordeloos, 2004. Evolution and host specificity in the ectomycorrhizal genus Leccinum. New Phytologist 163: 201-215.

Di Battista, C., M. A. Selosse, D. Bouchard, E. Stenström, F. Le Tacon, 1996. Variations in symbiotic efficiency, phenotypic characters and ploidy level among different isolates of the ectomycorrhizal basidiomycete Laccaria bicolor strain S 238. Mycological Research 100: 1315-1324.

Dore, J., M. Perraud, C. Dieryckx, A. Kohler, E. Morin, B. Henrissat, ... I. V. Grigoriev, 2015. Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete Hebeloma cylindrosporum and its involvement in ectomycorrhizal symbiosis. New Phytologist 208: 1169-1187.

Ekblad, A., H. Wallander, D. L. Godbold, C. Cruz, D. Johnson, P. Baldrian, ... H. Kraigher, 2013. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant and Soil 366: 1-27.

Frank, B., 1894. Die Bedeutung der Mykorrhizapilze für die gemeine Kiefer. Forstwissenschaftliches Centralblatt 16: 185-190.

Frank, B., 2005. On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of AB Frank’s classic paper of 1885). Mycorrhiza 15: 267-275.

Garcia, K., P. M. Delaux, K. R. Cope, J. M. Ané, 2015. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytologist 208: 79-87.

García-Guzmán, O. M., R. Garibay-Orijel, E. Hernández, E. Arellano-Torres, K. Oyama, 2017. Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. Mycorrhiza 27: 811-822.

Geml, J., G. A. Laursen, I. Timling, J. M. McFarland, G. Booth, N. Lennon, ... D. Taylor, 2009. Molecular phylogenetic biodiversity assessment of arctic and boreal ectomycorrhizal Lactarius Pers.(Russulales; Basidiomycota) in Alaska, based on soil and sporocarp DNA. Molecular Ecology, 18: 2213-2227.

Grelet, G., E. Martino, I. A. Dickie, R. Tajuddin, R. Artz, 2017. Ecology of ericoid mycorrhizal fungi: what insight have we gained with molecular tools and what’s missing. In: Martin, F., (ed.), Molecular Mycorrhizal Symbiosis. Wiley, Hoboken. pp. 405-419.

Halling, R. E., 2001. Ectomycorrhizae: co-evolution, significance, and biogeography. Annals of the Missouri Botanical Garden 88: 5-13.

Hess, J., A. Pringle, 2014. The natural histories of species and their genomes: asymbiotic and ectomycorrhizal Amanita fungi. In: Martin, F., (ed.), Advances in Botanical Research Vol. 70. Academic Press, London. pp. 235-257.

Hess, J., I. Skrede, M. Chaib De Mares, M. Hainaut, B. Henrissat, A. Pringle, 2018. Rapid divergence of genome architectures following the origin of an ectomycorrhizal symbiosis in the genus Amanita. Molecular biology and evolution 35: 2786-2804.

Hibbett, D. S., L. B. Gilbert, M. J. Donoghue, 2000. Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407: 506-508.

Hibbett, D. S., P. B. Matheny, 2009. The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC biology 7: 1-13.

Hobbie, E. A., N. S. Weber, J. M. Trappe, 2001. Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence. New Phytologist 150: 601-610.

Hosaka, K., M. A. Castellano, J. W. Spatafora, 2008. Biogeography of Hysterangiales (Phallomycetidae, Basidiomycota). Mycological Research 112: 448-462.

Hutchison, L. J., 1991. Description and identification of cultures of ectomycorrhizal fungi found in North America. Mycotaxon 42, 387-504.

James, T. Y., F. Kauff, C. L. Schoch, P. B. Matheny, V. Hofstetter, C. J. Cox, ... H. T. Lumbsch, 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443: 818-822.

Kennedy, P. G., R. Garibay-Orijel, L. M. Higgins, R. Ángeles-Argáiz, 2011. Ectomycorrhizal fungi in Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography. Mycorrhiza 21: 559-568.

Kennedy, P. G., P. B. Matheny, K. M. Ryberg, T. W. Henkel, J. K. Uehling, M. E. Smith, 2012. Scaling up: examining the macroecology of ectomycorrhizal fungi. Molecular ecology 21: 4151-4154.

Kennedy, P. G., J. K. Walker,L. M. Bogar, 2015. Interspecific mycorrhizal networks and non-networking hosts: exploring the ecology of the host genus Alnus. In: Horton, T. R., (ed.), Mycorrhizal Networks. Springer, Dordrecht pp. 227-254.

Kohler, A., A. Kuo, L. G. Nagy, E. Morin, K. W. Barry, F. Buscot, ... J. Colpaert, 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature genetics, 47: 410-415.

Kohler, A., F. Martin, 2017. The evolution of the mycorrhizal lifestyles-a genomic perspective. In: Martin, F., (ed.), Molecular Mycorrhizal Symbiosis. Wiley, Hoboken. pp. 89-107.

Koide, R. T., J. N. Sharda, J. R. Herr, G. M. Malcolm, 2008. Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytologist 178: 230-233.

Kong, A., J. Cifuentes, A. Estrada-Torres, L. Guzmán-Dávalos, R. Garibay-Orijel, B. Buyck, 2016. Russulaceae associated with mycoheterotroph Monotropa uniflora (Ericaceae) in Tlaxcala, Mexico: a phylogenetic approach. Cryptogamie, Mycologie 36: 479-513.

Kumla, J., E. A. Hobbie, N. Suwannarach, S. Lumyong, 2016. The ectomycorrhizal status of a tropical black bolete, Phlebopus portentosus, assessed using mycorrhizal synthesis and isotopic analysis. Mycorrhiza 26: 333-343.

LePage, B., R. Currah, R. Stockey, G. Rothwell, 1997. Fossil ectomycorrhizae from the Middle Eocene. American Journal of Botany 84: 410-410.

Lindahl, B. D., A. Tunlid, 2015. Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytologist 205: 1443-1447.

Looney, B. P., P. Meidl, M. J. Piatek, O. Miettinen, F. Martin, P. B. Matheny, J. L. Labbé, 2018. Russulaceae: a new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytologist. 218: 54-65.

Looney, B. P., M. Ryberg, F. Hampe, M. Sánchez-García, P. B. Matheny, 2016. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Molecular ecology 25: 630-647.

Martin, F., A. Aerts, D. Ahrén, A. Brun, E. G. J. Danchin, F. Duchaussoy, ... A. Salamov, 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452: 88-92.

Martin, F., A. Kohler, C. Murat, R. Balestrini, P. M. Coutinho, O. Jaillon, ... B. Porcel, 2010. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464: 1033-1038.

Martin, F., A. Kohler, C. Murat, C. Veneault-Fourrey, D. S. Hibbett, 2016. Unearthing the roots of ectomycorrhizal symbioses. Nature Reviews Microbiology 14: 760-773.

Martin, F., M. A. Selosse, 2008. The Laccaria genome: a symbiont blueprint decoded. New Phytologist 180: 296-310.

Matheny, P. B., M. C. Aime, N. L. Bougher, B. Buyck, D. E. Desjardin, E. Horak, ... D. S. Hibbett, 2009. Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae. Journal of Biogeography 36: 577-592.

Mueller, G. M., B. A. Strack, 1992. Evidence for a mycorrhizal host shift during migration of Laccaria trichodermophora and other agarics into neotropical oak forests. Mycotaxon 45: 249-256.

Murat, C., T. Payen, B. Noel, A. Kuo, E. Morin, J. Chen, ... B, Montanini, 2018. Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nature ecology & evolution 2: 1956-1965.

Muszewska, A., K. Steczkiewicz, M. Stepniewska-Dziubinska, K. Ginalski, 2017. Cut-and-paste transposons in fungi with diverse lifestyles. Genome biology and evolution, 9: 3463-3477.

Näsholm, T., K. Kielland, U. Ganeteg, 2009. Uptake of organic nitrogen by plants. New Phytologist 182: 31-48.

Nguyen, N. H., L. J. Williams, J. B. Vincent, A. Stefanski, J. Cavender-Bares, C. Messier, ... P. Kennedy, 2016. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field‐based tree experiment. Molecular ecology 25: 4032-4046.

O’Donnell, K., A. P. Rooney, G. L. Mills, M. Kuo, N. S. Weber, S. A. Rehner, 2011. Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic. Fungal Genetics and Biology, 48: 252-265.

Parniske, M., 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology 6: 763-775.

Pellegrin, C., Y. Daguerre, J. Ruytinx, F. Guinet, M. Kemppainen, M. B. Plourde, ... F. Martin, 2017. Laccaria bicolor MiSSP8 is a small-secreted protein decisive for the establishment of the ectomycorrhizal symbiosis.

Pellitier, P. T., D. R. Zak, 2018. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New Phytologist 217: 68-73.

Pena, R., 2016. Nitrogen acquisition in ectomycorrhizal symbiosis. In: Martin, F., (ed.), Molecular Mycorrhizal Symbiosis. Wiley, Hoboken. pp. 179-196.

Peter, M., A. Kohler, R. A. Ohm, A. Kuo, J. Krützmann, E. Morin, ... A. Clum, 2016. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nature communications 7: 12662.

Peterson, R. L., H. B. Massicotte, L. H. Melville, 2004. Mycorrhizas: anatomy and cell biology. NRC Research Press.

Plett, J. M., Y. Daguerre, S. Wittulsky, A. Vayssières, A. Deveau, S. J. Melton, ... F. Martin, 2014. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proceedings of the National Academy of Sciences 111: 8299-8304.

Plett, J. M., M. Kemppainen, S. D. Kale, A. Kohler, V. Legué, A. Brun, ... F. Martin, 2011. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Current Biology 21: 1197-1203.

Plett, J. M., F. Martin, 2011. Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends in Genetics 27: 14-22.

Plett, J. M., F. Martin, 2012. Poplar root exudates contain compounds that induce the expression of MiSSP7 in Laccaria bicolor. Plant signaling & behavior 7: 12-15.

Plett, J. M., F. Martin, 2015. Reconsidering mutualistic plant-fungal interactions through the lens of effector biology. Current Opinion in Plant Biology 26: 45-50.

Plett, J. M., F. Martin, 2018. Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. The Plant Journal 93: 729-746.

Plett, J. M., E. Tisserant, A. Brun, E. Morin, I. V. Grigoriev, A. Kuo, ... A. Kohler, 2015. The mutualist Laccaria bicolor expresses a core gene regulon during the colonization of diverse host plants and a variable regulon to counteract host-specific defenses. Molecular Plant-Microbe Interactions 28: 261-273.

Plett, J. M., H. Yin, R. Mewalal, R. Hu, T. Li, P. Ranjan, ... H. B. Guo, 2017. Populus trichocarpa encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis. Scientific reports 7: 382.

Põlme, S., M. Bahram, U. Kõljalg, L. Tedersoo, 2014. Global biogeography of Alnus-associated Frankia actinobacteria. New Phytologist 204: 979-988.

Ramos, A., V. M. Bandala, L. Montoya, 2017. A new species and a new record of Laccaria (Fungi, Basidiomycota) found in a relict forest of the endangered Fagus grandifolia var. mexicana. MycoKeys 27: 77-94.

Read, D. J., J. Perez‐Moreno, 2003. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance?. New Phytologist 157: 475-492.

Rinaldi, A. C., O. Comandini, T. W. Kuyper, 2008. Ectomycorrhizal fungal diversity: seperating the wheat from the chaff. Fungal diversity 33: 1-45.

Rineau, F., F. Shah, M. M. Smits, P. Persson, T. Johansson, R. Carleer, ... A. Tunlid, 2013. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. The ISME journal 7: 2010-2022.

Ryberg, M., P. B. Matheny, 2011. Asynchronous origins of ectomycorrhizal clades of Agaricales. Proceedings of the Royal Society of London B: Biological Sciences 279: 2003-2011.

Sánchez‐Ramírez, S., R. S. Etienne, J. M. Moncalvo, 2015 a. High speciation rate at temperate latitudes explains unusual diversity gradients in a clade of ectomycorrhizal fungi. Evolution, 69 2196-2209.

Sánchez‐García, M., P. B. Matheny, 2017. Is the switch to an ectomycorrhizal state an evolutionary key innovation in mushroom‐forming fungi? A case study in the Tricholomatineae (Agaricales). Evolution 71: 51-65.

Sánchez-Ramírez, S., R. E. Tulloss, M. Amalfi, J. M. Moncalvo, 2015 b. Palaeotropical origins, boreotropical distribution and increased rates of diversification in a clade of edible ectomycorrhizal mushrooms (Amanita section Caesareae). Journal of Biogeography 42: 351-363.

Sánchez-Ramírez, S., A. W. Wilson, M. Ryberg, 2017. Overview of phylogenetic approaches to mycorrhizal biogeography, diversity and evolution. In: Tedersoo, L., (ed.), Biogeography of Mycorrhizal Symbiosis. Springer, Cham. pp. 1-37.

Selosse, M. A., M. P. Dubois, N. Alvarez, 2009. Do Sebacinales commonly associate with plant roots as endophytes?. Mycological Research 113: 1062-1069.

Smith, G. R., R. D. Finlay, J. Stenlid, R. Vasaitis, A. Menkis, 2017. Growing evidence for facultative biotrophy in saprotrophic fungi: data from microcosm tests with 201 species of wood-decay basidiomycetes. New Phytologist 215: 747-755.

Smith, S. E., D. J. Read, 2008. Mycorrhizal symbiosis. 3rd. Academic Press New York, ISBN, 440026354, 605.

Soudzilovskaia, N. A., S. Vaessen, M. van’t Zelfde, N. Raes, 2017. Global Patterns of Mycorrhizal Distribution and Their Environmental Drivers. In: Tedersoo, L., (ed.), Biogeography of Mycorrhizal Symbiosis. Springer, Cham. pp. 223-235.

Strullu‐Derrien, C., M. A. Selosse, P. Kenrick, F. Martin, 2018. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist 220: 1012-1030.

Talbot, J. M., K. K. Treseder, 2010. Controls over mycorrhizal uptake of organic nitrogen. Pedobiologia 53: 169-179.

Tschaplinski, T. J., J. Plett, N. L. Engle, A. Deveau, K. C. Cushman, M. Z. Martin, ... F. Martin, 2014. Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Molecular Plant-Microbe Interactions 27: 546-556.

Taylor, T. N., M. Krings, E. L. Taylor, 2015. Fungal Diversity in the Fossil Record. In: McLaughlin D., J. Spatafora (eds.), Systematics and Evolution. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), vol 7B. Springer, Berlin, Heidelberg. pp. 259-278

Tedersoo, L., M. Bahram, S. Põlme, U. Kõljalg, N. S. Yorou, R. Wijesundera, … M. Smith, 2014. Global diversity and geography of soil fungi. Science 346: 1256688.

Tedersoo, L., M. C. Brundrett, 2017. Evolution of ectomycorrhizal symbiosis in plants. In: Tedersoo, L., (ed.), Biogeography of Mycorrhizal Symbiosis. Springer, Cham. pp. 407-467.

Tedersoo, L., K. Nara, 2010. General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytologist 185: 351-354.

Tedersoo, L., M. Smith, 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biology Reviews 27: 83-99.

Tedersoo, L., M. E. Smith, 2017. Ectomycorrhizal fungal lineages: detection of four new groups and notes on consistent recognition of ectomycorrhizal taxa in high-throughput sequencing studies. In: Tedersoo, L., (ed.), Biogeography of Mycorrhizal Symbiosis. Springer, Cham. pp. 125-142.

Tedersoo, L., T. W. May, M. E. Smith, 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20: 217-263.

Tisserant, E., M. Malbreil, A. Kuo, A. Kohler, A. Symeonidi, R. Balestrini, ... L. Gilbert, 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences 110: 20117-20122.

Toruño, T. Y., I. Stergiopoulos, G. Coaker, 2016. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual review of phytopathology 54: 419-441.

Truong, C., S. Sánchez-Ramírez, F. Kuhar, Z. Kaplan, M. E. Smith, 2017. The Gondwanan connection–Southern temperate Amanita lineages and the description of the first sequestrate species from the Americas. Fungal biology 121: 638-651.

Van der Heijden, M. G., F. M. Martin, M. A. Selosse, I. R. Sanders, 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205: 1406-1423.

Vellinga, E. C., B. E. Wolfe, A. Pringle, A. 2009. Global patterns of ectomycorrhizal introductions. New Phytologist 181: 960-973.

Veneault‐Fourrey, C., J. M. Plett, F. Martin, 2014. Who is controlling whom within the ectomycorrhizal symbiosis: insights from genomic and functional analyses. In: Brujin, F. J., (ed.), Molecular Microbial Ecology of the Rhizosphere: Volume 1 & 2, Wiley, Hoboken. pp. 501-512.

Venkateshwaran, M., J. D. Volkening, M. R. Sussman, J. M. Ané, 2013. Symbiosis and the social network of higher plants. Current Opinion in Plant Biology 16: 118-127.

Weiss, M., M. A. Selosse, K. H. Rexer, A. Urban, F. Oberwinkler, 2004. Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycological research 108: 1003-1010.

Wilson, A. W., M. Binder, D. S. Hibbett, 2011. Effects of gasteroid fruiting body morphology on diversification rates in three independent clades of fungi estimated using binary state speciation and extinction analysis. Evolution 65: 1305-1322.

Wilson, A. W., K., Hosaka, G. M. Mueller, 2017 a. Evolution of ectomycorrhizas as a driver of diversification and biogeographic patterns in the model mycorrhizal mushroom genus Laccaria. New Phytologist 213: 1862-1873.

Wilson, A. W., T. W. May, G. M. Mueller, 2017 b. Biogeography of the Ectomycorrhizal Mushroom Genus Laccaria. In: Tedersoo, L., (ed.), Biogeography of Mycorrhizal Symbiosis. Springer, Cham. pp. 273-297.

Wolfe, B. E., R. E. Tulloss, A. Pringle, 2012. The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis. PLoS One 7: e39597.

Zhang, F., G. E. Anasontzis, A. Labourel, C. Champion, M. Haon, M. Kemppainen, M. N Rosso, 2018. The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β‐1, 4 endoglucanase that plays a key role in symbiosis development. New Phytologist 220: 1309-1321.

Zuccaro, A., U. Lahrmann, U. Güldener, G. Langen, S. Pfiffi, D. Biedenkopf, ... C. Murat, 2011. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS pathogens 7: e1002290

Publicado
2019-12-31
Sección
Revisiones