Bioprospecting of fungi with antiproliferative activity from the mangrove sediment of the Tampamachoco coastal lagoon, Veracruz, Mexico

Homero Lumbreras Martínez, César Espinoza, José J. Fernández, Manuel Norte, Irene Lagunes, José M. Padrón, Jorge López-Portillo, Ángel Trigos

Resumen


Background: Fungi from mangrove forests represent a great potential for the bioprospecting of new bioactive metabolites. The rhizosphere of several regions of the world has been widely studied, however, there are no studies on the biodiversity of Mexican mangroves.

Objectives: To evaluate the anti-proliferative activity of fungal extracts isolated from accumulated sediments in the rhizosphere of three mangrove species distributed in three zones with different degrees of salinity in Mexico.

Methods: The isolated fungi were identified at genus level by taxonomic keys. The anti-proliferative activity was determined by the SRB assay and the strains with values of GI50 <100 μg.mL-1 were identified molecularly.

Results and conclusions: Six extracts from four strains exhibited GI50 values < 100 µg.mL-1 in at least one cancer cell line. A strain of Aspergillus pulverulentus isolated from a disturbed area of Avicennia germinans showed the highest anti-proliferative activity against six different cancer cell lines.  The GI50 values ranged from 40 to 83 µg.mL-1 in biomass extracts and 6 to 28 µg.mL-1 in culture broth extracts. This paper is the first study of bioprospecting fungi showing anti-proliferative activity in mangrove sediments in Mexico.


Palabras clave


bioprospecting; fungi microscopic; mangrove soils; salinity levels; anti-proliferative effect

Texto completo:

PDF (English)

Referencias


Abreu, R.A., M. Prata-Sena, B. Castro-Carvalho, T. Dethoup, S. Buttachon, A. Kijjoa, E. Rocha, 2015. Potential of four marine-derived fungi extracts as anti-proliferative and cell death-inducing agents in seven human cancer cell lines. Asian Pacific Journal of Tropical Medicine 8: 798-806.

Bandaranayake, W.M, 2002. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecology and Management 10: 421-452.

Barnett, H.L., B.B. Hunter, 1998. Illustrated genera of imperfect fungi. American Phytopathological Society Press. St. Paul, Minnesota.

Cai, S., S. Sun, H. Zhou, X. Kong, T. Zhu, D. Li, Q. Gu, 2011. Prenylated polyhydroxy-p-terphenyls from Aspergillus taichungensis ZHN-7-07. Journal of Natural Products 74: 1106-1110.

CONABIO, 2009. Manglares de México: Extensión y distribución. 2ª ed. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México.

Couttolenc, A., C. Espinoza, J.J. Fernandez, M. Norte, G.B. Plata, J.M. Padrón, A. Shnyreva, A. Trigos, 2016. Anti-proliferative effect of extract from endophytic fungus Curvularia trifolii isolated from the "Veracruz Reef System" in Mexico. Pharmaceutical Biology 22: 1-6.

Debbab, A., A.H. Aly, P. Proksch, 2012. Endophytes and associated marine derived fungi-ecological and chemical perspectives. Fungal Diversity 57: 45-83.

Debbab, A., A.H. Aly, P. Proksch, 2013. Mangrove derived fungal endophytes: A chemical and biological perception. Fungal Diversity 61: 1-27.

Diaz, G.J., 1996. Micotoxinas y micotoxicosis en salud humana y animal. Primera parte. Veterinaria al Día 2: 28-34.

Elavarasi, A., G.S. Rathna, M. Kalaiselvam, 2012. Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana. Asian Pacific Journal of Tropical Biomedicine 2: S1081-S1085.

Gao, H., W. Guo, Q. Wang, L. Zhang, M. Zhu, T. Zhu, Q. Gu, W. Wang, D. Li, 2013. Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorganic and Medicinal Chemistry Letters 23: 1776-1778.

Huang, H., Z. Xiao, X. Feng, C. Huang, X. Zhu, J. Ju, M. Li, Y. Lin, L. Liu, Z. She, 2011. Cytotoxic naphtho-γ-pyrones from the mangrove endophytic fungus Aspergillus tubingensis (GX1-5E). Helvetica Chimica Acta 94: 1732-1740.

Huang, Z., X. Cai, C. Shao, Z. She, X. Xia, Y. Chen, J. Yang, S. Zhou, Y. Lin, 2008. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69: 1604-1608.

Jones, E.B.G, 2011. Fifty years of marine mycology. Fungal Diversity 50: 73-112.

athiresan, K., B.L. Bingham, 2001. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology 40: 81-251.

Kathiresan, K., S. Boopathy, S.K. Sahu, A.K. Saravanakumar, M. Syed Musthafa, C. Ravinder Singh, S. Kavitha, S. Anandhan, G. Abirami, K. Kayalvizhi, V. Shanmuga Arasu, 2013. Bioprospecting potential of mangrove resources. International Journal of Current Molecular Research 1: 5-11.

Kjer, J., A. Debbab, A.H. Aly, P. Proksch, 2010. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protocols 5: 479-90.

Kupka, J., T. Anke, W. Steglich, L. Zechlin, 1981. Antibiotics from basidiomycetes. XI. The biological activity of siccayne, isolated from the marine fungus Halocyphina villosa J.& amp; E. Kohlmeyer. Journal of Antibiotics 34: 298-304.

Liu, D., X.M. Li, C.S. Li, B.G. Wang, 2013. Nigerasterols A and B, anti-proliferative sterols from the mangrove-derived endophytic fungus Aspergillus niger MA-132. Helvetica Chimica Acta 96: 1055-1061.

Monks, A., D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, 1991. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute 83: 757-766.

Nicoletti, R., M.M. Salvatore, A. Andolfi, 2018. Secondary metabolites of mangrove-associated strains of Talaromyces. Marine Drugs 16: 1-15.

Ramírez, D.N., R.J.A. Serrano, T.H. Sandoval, 2006. Extremophile microorganisms: Halophile actinomycetes in Mexico. Revista Mexicana de Ciencias Farmacéuticas 37: 56-71.

Rizo-Ríos, P., M.I. Sierra, G. Vázquez, M. Cano, A. Meneses, A. Mohar, 2007. Registro hospitalario de cáncer: compendio de cáncer 2000-2004. Cancerología 2: 203-287.

Skehan, P., R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J.T. Warren, H. Bokesch, S. Kenney, M.R. Boyd, 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute 82: 1107-1112.

Sosa-Rodríguez, T., J. Sánchez-Nieves, L.M. Melgarejo, 2009. Functional role of fungi in mangrove ecosystems. Boletín de Investigaciones Marinas y Costeras 38: 39-57.

Tamura, K., G. Stecher, D. Peterson, A. Filipski, S. Kumar, 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.

Thatoi, H., B.C. Behera, R.R. Mishra, 2013. Ecological role and biotechnological potential of mangrove fungi: A review. Mycology 4: 54-71.

Vovides, A.G., J. López-Portillo, Y. Bashan, 2011. N2-fixation along a gradient of long-term disturbance in tropical mangroves bordering the Gulf of Mexico. Biology and Fertility of Soils 47: 567-576.

Wang, X., Z.G. Mao, B.B. Song, CH. Chen, W.W. Xiao, B. Hu, J.W. Wang, X.B. Jiang, Y.H. Zhu, H.J. Wang, 2013. Advances in the study of the structures and bioactivities of metabolites isolated from mangrove-derived fungi in the South China Sea. Marine Drugs 11: 3601-3616.

Watanabe, T., 2002. Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species. CRC Press, Boca Ratón.

Yu, H., D. Chronis, S. Lu, X. Wang, 2011. Chorismate mutase: an alternatively spliced parasitism gene and a diagnostic marker for three important Globodera nematode species. European Journal of Plant Pathology 129: 89-102.


Enlaces refback

  • No hay ningún enlace refback.